Prof. Adrien Couet学术报告会
发布时间:2025-10-23   阅读:252

题目:Chemistry-Driven Corrosion in Molten Salts: from High-Throughput Screening to Operando Spectroscopy and Irradiation

时间:2025年10月23日 10:00-12:00

地点:机械与动力工程学院 F310会议室

邀请人:王亚飞 副教授、石伟群 教授(核燃料循环与核材料研究所)


Biography

1758683602980582.jpg

Adrien Couet is a Professor in the Nuclear Engineering and Engineering Physics Department at the University of Wisconsin-Madison, where he leads the MaDCoR lab (Materials Degradation under Corrosion and Radiation). Previously a nuclear materials research engineer at EDF, he earned his Ph.D. in Nuclear and Mechanical Engineering from Penn State in 2014 on fuel-cladding corrosion. His group studies materials degradation in extreme environments, especially light-water and molten-salt reactors, using advanced characterization and first-principles modeling, with recent work in alloy design via high-throughput experiments and machine learning. MaDCoR’s projects span PWR cladding corrosion, MSR structural materials, and irradiation-resistant CCAs for fission and fusion. He also directs the UW Ion Beam Laboratory and co-organizes the Nuclear Innovation Bootcamp.


Abstract

Corrosion in molten fluoride and chloride salts is governed as much by salt chemistry (redox potential, metal-ion speciation, impurities) as by alloy composition and temperature. I will first outline the chemical levers that control electrochemical dissolution and dealloying, and how these couple to microstructure. I’ll then highlight four complementary approaches we use to interrogate this landscape: (1) a high-throughput molten-salt droplet platform screening large alloy/composition spaces and extracting quantitative loss metrics and drivers’ identification; (2) UV–Vis spectroscopy to track in situ salt chlorine activity as function of chloro-acidity; (3) operando X-ray absorption spectroscopy to follow the local coordination and oxidation state of redox buffers and corrosion products; and (4) micro-electrochemistry to map local currents and diffusion, resolving gradients at alloy/salt interfaces. I will close with new results on in-situ irradiation effects during molten-salt exposure, showing how displacement damage and irradiation-modified redox conditions can accelerate selective dissolution. Together, these tools link chemistry to mechanism, enabling data-guided selection and qualification of alloys and salts for advanced systems, including MSRs and high-heat-flux components.


Baidu
map